Xiaoyan Cong

Providence, RI | xiaoyan_cong@brown.edu | Homepage: Oliver-Cong02.github.io/ | +1 (401) 500-3107

Education

 Brown University, Ph.D. Student of Computer Science Advisor: <i>Professor Srinath Sridhar</i> 	September 2024 – Present
 Zhejiang University, B.Eng. in Robotics Engineering, Chu Kochen Honor College GPA: 3.99/4.0 Advisors: Professor Qixing Huang 	September 2020 – June 2024
 Hong Kong University of Science and Technology, Exchange Student Dean's List Advisors: Professor Qifeng Chen & Professor Chenyang Lei 	January 2023 – June 2023
Research Interests	
My research interest lies in broad aspects of Computer Vision, Computer Graphics as more specifically 3D spatiotemporal visual perception, understanding and reasoning interactions with the world. I am also interested in understanding generative model from both theoretical and application perspectives.	g of human physical
Publications	
OscillationInversion: Understand the structure of Large Flow Model through the Lens of Inversion Method	October 2024
Anonymous	
Under Review	
Automatic Controllable Colorization by Imagination	June 2024
Xiaoyan Cong, Yue Wu, Qifeng Chen, Chenyang Lei	
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024 [arxiv: 24	
4DRecons: 4D Neural Implicit Deformable Objects Reconstruction from a single RGB-D Camera with Geometrical and Topological Regularizations	e 2024
Xiaoyan Cong, Haitao Yang, Liyan Chen, Kaifeng Zhang, Li Yi, Chandrajit Bajaj, Qix	ing Huang
Under Review [arxiv: 2406.10167]	
Research Experience	
 Graduate Researcher, Brown University Advisors: Prof. Srinath Sridhar 	Sep. 2024 – Present
Gaussian Splatting for Markerless Grasp and Manipulation Understanding of	-
 Try to propose a novel dynamic gaussian splatting based pipeline for reconstruct hand-object interactive process. 	cting and understanding the
 Utilize two different templates to model objects and hands respectively, hopeful applications such as arbitrary grasp and manipulation animation generation. 	lly supporting downstream
Research Intern, University of Texas at Austin	Jun. 2023 – Nov. 2023
Advisors: Prof. Qixing Huang & Prof. Li Yi	
4D Neural Implicit Deformable Objects Reconstruction	
 Introduced a novel approach 4DRecons that takes a monocular RGB-D sequence and outputs a complete textured deforming reconstruction. 	e of dynamic objects as input
- Proposed an optimization procedure that enforces the deformation among adja	cent frames is

as-rigid-as-possible (ARAP) and ensures the topology remains fixed over time.

- Demonstrated that 4DRecons can handle large deformations and complex inter-part interactions, outperforming state-of-the-art approaches considerably.

Research Intern, Hong Kong University of Science and Technology

- Advisors: Prof. Qifeng Chen & Prof. Chenyang Lei
- Automatic Controllable Colorization by Imagination
 - Introduced a novel framework for automatic and controllable colorization, enabling iterative editing and modifications.
 - Proposed an Imagination Module that utilizes Diffusion Models (ControlNet) to generate multiple reference candidates with similar semantics and structures to a black-and-white input. The optimal reference is composed from all reference candidates by selecting each segment with the most similar DINO feature.
 - Devised a Colorization Module that colorizes the black-and-white input under the guidance of the optimal reference.
 - Demonstrated our framework's superiority over state-of-the-art methods, achieving controllable and editable colorization, which is non-trivial in the automatic colorization community.

Research Intern, Zhejiang University

• Advisors: Prof. Xiaowei Zhou & Prof. Sida Peng

- Neural Reconstruction and Novel View Synthesis of Transparent Objects
 - Proposed a novel neural implicit signed distance function (SDF) field of 3D-varing index of refraction (IOR).
 - Introduced a refraction-ray-tracing based volume rendering scheme, adhering to the laws of eikonal light transport.

Selected Awards and Honors

Excellence Scholarship, by Chu Kochen Honors College, Zhejiang University, Top 1%	
Chinese National Scholarship, by Ministry of Education of the People's Republic of China, Top 0.2%	
Chunhui Scholarship, by College of Control Science and Engineering, Zhejiang University, Top 1%	
Zhejiang Provincial Government Scholarship, Top 2%	2020 - 2022
First-prize Scholarship of Zhejiang University, Top 2%	2020 - 2022

Computer and Language Skills

Programming Languages: Proficient in C/C++, Python (Pytorch), MATLAB. **Technical Skills:** Linux/Windows, MeshLab, Blender, SolidWorks, CoppeliaSim, Multisim. **Language:** Mandarin (native), English (fluent).

Jan. 2023 – Nov. 2023

Jun. 2022 – Dec. 2022